Answer:
The term rotational and irrotational flow is associated withe the flow of particles in fluid.
The common example of irrrotational flow can be seen on the carriages of the Ferris wheel (giant wheel).
Explanation:
- If the fluid is rotating along its axis with the streamline flow of its particles,then this type of flow is rotational flow.
- Similarly if fluid particles do not rotate along its axis while flowing in a stream line flow then it is considered as the irrotational flow.
- In majority, if the flow of fluid is viscid then it is rotational.
- Fluid in a rotating cylinder is an example of rotating flow.
Answer:
A & B
Explanation:
He used 2 peach basket and a soccer ball
Answer:

Explanation:
The change in electrical potential energy of a charged particle moving through a potential difference is given by

where
q is the magnitude of the charge of the particle
is the potential difference
In this problem:
- the charge of the particle is 3.00 elementary charges, so

- the potential difference is

So, the change in electrical potential energy is

Answer:
The power in this flow is 
Explanation:
Given that,
Distance = 221 m
Power output = 680 MW
Height =150 m
Average flow rate = 650 m³/s
Suppose we need to calculate the power in this flow in watt
We need to calculate the pressure
Using formula of pressure

Where,
= density
h = height
g = acceleration due to gravity
Put the value into the formula


We need to calculate the power
Using formula of power

Put the value into the formula


Hence, The power in this flow is 
Answer:
<em>2.72 x 10^-43 m</em>
<em></em>
Explanation:
mass of the telescope = 7500 kg
speed of the telescope = 3.25 x 10^5 m/s
de Broglie's wavelength of the telescope is given as
λ = h/mv
where
λ is the wavelength of the telescope
h is the plank's constant = 6.63 × 10-34 m^2 kg/s
m is the mass of the telescope = 7500 kg
v is speed of the telescope = 3.25 x 10^5 m/s
substituting value, we have
λ = (6.63 × 10-34)/(7500 x 3.25 x 10^5)
λ = <em>2.72 x 10^-43 m</em>