<span>Electrons in a nitrogen-phosphorus covalent bond are not shared equally because nitrogen and phosphorus do not have the same electronegativity. The atoms spend more time around the most electronegative atom nitrogen.</span>
The given chemical reaction is:

Δ
∑BE(reactants)-∑BE(products)
= {(941 kJ/mol) + (3 * 242 kJ/mol)} -[{2*(3*200 kJ/mol)}]
= 467 kJ/mol
Calculating the change in heat when 85.3 g chlorine reacts in the above reaction:
Moles of chlorine = 
= 1.20 mol 
Heat change when 1.20 mol chlorine reacts
= 
<span>Electron because it is incredibly small. like 1840 times smaller than the proton. and it travels around the proton. The nucleus is made of proton and neutron and electron travels around it.</span>
Answer:
a) Fe(s) + Ni^2+(aq) ----> Fe^2+(aq) + Ni(s)
b) no reaction
c) no reaction
d) 2Mg(s) + 2H2O(l)-----> 2Mg^2+(aq) + O2(g) +4H^+(aq)
e) no reaction
Explanation:
It is important to say here that the ability of a particular chemical specie to displace another chemical specie is dependent on the relative standard reduction potentials of the species involved.
All the reactions stated above are redox reactions. Let us take reaction E as an example. Mg^2+ has a reduction potential of -2.37 V while Cr^3+ has a reduction potential of -0.74V. Since the reduction potential of magnesium is more negative than that of chromium, there is no reaction when a piece of chromium metal is dipped into a solution of Mg^2+.
Similarly, though metals displace hydrogen gas from dilute acids, metals that are less than hydrogen in the reactivity series cannot do that. This explains why there is no reaction when copper and silver are dipped into dilute acid solutions.
Reaction occurs when iron is dipped into a nickel solution because the reduction potential of Fe^2+ is far more negative than that of Ni^2+.