<span>0.0687 m
The balanced equation is
BaCl2 + Na2SO4 ==> BaSO4 + 2 NaCl
Looking at the equation, it indicates that there's a 1 to 1 ratio of BaCl2 and Na2SO4 in the reaction. So the number of moles of each will be equal. Now calculate the number of moles of Na2SO4 we had. Start by looking up atomic weights.
Atomic weight sodium = 22.989769
Atomic weight sulfur = 32.065
Atomic weight oxygen = 15.999
Molar mass Na2SO4 = 2 * 22.989769 + 32.065 + 4 * 15.999 = 142.040538 g/mol
Moles Na2SO4 = 0.554 g / 142.040538 g/mol = 0.003900295 mol
Molarity is defined as moles per liter, so let's do the division.
0.003900295 mol / 0.0568 l = 0.068667165 mol/l = 0.068667165 m
Rounding to 3 significant figures gives 0.0687 m</span>
A "3" should but put in front of
<span>"cas o 4 "</span>
A metallic bond is a force that holds atoms together in a metallic substance.
Answer:
the adjective is the word "famous" because an adjective describes a noun. and ben franklin is the noun here. (or subject.)
You are given a galvanic cell consists of a Ni²⁺/ Ni half-cell and a standard hydrogen electrode. Also, you are given that the half cell Ni²⁺/ Ni will act as an anode, and the standard cell potential is 0.26V. You are asked to find the standard reduction potential for the half cell Ni²⁺/ Ni.
You will have a half - reaction for both nickel and hydrogen
The conversion of the symbol Ni²⁺/ Ni half-cell is
Ni²⁺ + 2e⁻ → Ni (s) E = 0.26V
and the conversion of the standard hydrogen electrode (SHE) is
2H⁺ + 2e⁻ → H₂ (g) E = 0V
Since H⁺ ions is a it difficult to set up during the process, nickel will be deposited at the cathode side instead of the anode. Therefore, The standard electron potential of the nickel will have -0.26V.