Answer:
A procedure according to the norms.
Explanation:
If possible, proceed to fix the leak in no more than 30 days from the moment it was discovered.
Otherwise, during the first 30 days develop a planification to backfit the leak or, if needed, retire the appliance. This should be executed within one year.
Answer:
959183.7 kg
Explanation:
from the question we have :
young modulus = 5 x 10^{9} N/m^{2}
strain = 2% = 2÷100 = 0.02
diameter = 0.03 m
radius = 0.015 m
acceleration due to gravity (g) = 9.8 m/s^{2}
we can get the mass from the formula below
young modulus = stress ÷ strain
where
stress = \frac[force}{area} = \frac {mass x g}{area}
area = 2πr = 2π x 0.015 = 0.094
therefore
young modulus = \frac{\frac {mass x g}{area}}{strain}
5 x 10^{9} = \frac{\frac {mass x 9.8}{0.094}}{0.02}
mass = \frac{5 x 10^{9} x 0.02 x 0.094}{9.8}
mass = 959183.7 kg
Answer:
Inelastic collisions actually do conserve energy, but the loss of energy to heat and mechanical vibration is hard to calculate so the math equating energy before and energy after is hard to balance.
Answer:
75457.54816 N
Explanation:
= Initial force
= Weight of car = 11547.83 N
= Smaller radius = 5 cm
= Larger radius = 19.56 cm
From Pascal's law we have

The force is 754.57548 N
The magnitude of static friction is
<em>f</em> = <em>mv</em> ²/<em>r</em>
(i.e. the net force acting on the car parallel to the road points toward the center of the curve)
while the net vertical force must be
∑ <em>F</em> = <em>n</em> - <em>mg</em> = 0
because the car is otherwise in equilibrium. Then
==> <em>n</em> = <em>mg</em>
==> <em>f</em> = <em>µn</em> = <em>µmg</em> = <em>mv</em> ²/<em>r</em>
==> <em>µ</em> = <em>v</em> ²/(<em>rg</em>)
We have
<em>v</em> = 101 km/h ≈ 28.1 m/s
<em>r</em> = 110 m
<em>g</em> = 9.80 m/s²
so that
<em>µ</em> = (28.1 m/s)² / ((110 m) <em>g</em>) ≈ 0.730