To determine the centroid of the object first moment of area is used.
To predict the resistance of a shape to bending and deflection which are directly proportional, second moment of area is used.
Answer:
Force is 57.69 N to the opposite direction of motion of dolphin.
Explanation:
We have force is the product of mass and acceleration.
That is
Force = Mass x Acceleration
F = ma
Mass of dolphin, m = 30 kg
We have equation of motion, v = u + at
Final velocity, v = 7 m/s
Initial velocity, u = 12 m/s
Time, t = 2.60 s
Substituting
7 = 12 + a x 2.6
a = -1.92 m/s²
Force, F = 30 x -1.92 = -57.69 N
So the force is 57.69 N to the opposite direction of motion of dolphin.
Answer:
E
= -4556.18 N/m
Explanation:
Given data
u = 3.6×10^6 m/sec
angle = 34°
distance x = 1.5 cm = 1.5×10^-2 m (This data has been assumed not given in
Question)
from the projectile motion the horizontal distance traveled by electron is
x = u×cosA×t
⇒t = x/(u×cos A)
We also know that force in an electric field is given as
F = qE
q= charge , E= strength of electric field
By newton 2nd law of motion
ma = qE
⇒a = qE/m
Also, y = u×sinA×t - 0.5×a×t^2
⇒y = u×sinA×t - 0.5×(qE/m)×t^2
if y = 0 then
⇒t = 2mu×sinA/(qE) = x/(u×cosA)
Also, E = 2mu^2×sinA×cosA/(x×q)
Now plugging the values we get
E = 2×9.1×10^{-31}×3.6^2×10^{12}×(sin34°)×(cos34°)/(1.5×10^{-2}×(-1.6)×10^{-19})
E
= -4556.18 N/m
Answer:(a) 50 N
(b)38.34 N
Explanation:
Given
Maximum tension(T) in line 50 N
(a)If line is moving up with constant velocity i.e. there is no acceleration
This will happen when Tension is equal to weight of Fish
T-mg=0
T=mg
Maximum weight in this case will be 50 N
(b)acceleration of magnitude 
T-mg=ma


m=3.91
Therefore weight is 