Answer:
w = 1.976 rpm
Explanation:
For simulate the gravity we will use the centripetal aceleration
, so:

where w is the angular aceleration and r the radius.
We know by the question that:
r = 60.5m
= 2.6m/s2
So, Replacing the data, and solving for w, we get:

W = 0.207 rad/s
Finally we change the angular velocity from rad/s to rpm as:
W = 0.207 rad/s = 0.207*60/(2
)= 1.976 rpm
B. Ptolemy believed that the earth was the center of the universe
I cant do all but I can do number 4
When force moves ur leg u start skatin and when that happenes ur using a lot of force to move
Answer:
to overcome the out of friction we must increase the angle of the plane
Explanation:
To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.
X axis
fr - Wₓ = m a (1)
Y axis
N-
= 0
N = W_{y}
let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
the friction force has the formula
fr = μ N
fr = μ Wy
fr = μ mg cos θ
from equation 1
at the point where the force equals the maximum friction force
in this case the block is still still so a = 0
F = fr
F = (μ mg) cos θ
We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.
This is the force that balances the friction force, any force slightly greater than F initiates the movement.
Consequently, to overcome the out of friction we must increase the angle of the plane
the correct answer is to increase the angle of the plane