Answer:

Explanation:
Hello,
In this case, is possible to infer that the thermal equilibrium is governed by the following relationship:

Thus, both iron's and water's heat capacities are: 0.444 and 4.18 J/g°C respectively, so one solves for the mass of water as shown below:

Best regards.
Answer:
ΔT = 0.78 °C
Explanation:
Given data:
Mass of Al = 9.5 g
Specific heat capacity of Al = 0.9 J/g.°C
Temperature change = ?
Heat added = 67 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
67 J = 9.5 g × 0.9 j/g.°C × ΔT
67 J = 85.5 j/°C × ΔT
ΔT = 67 J / 85.5 j/°C
ΔT = 0.78 °C
<span>The number of neutrons bromine will have are equal to
= protons + neutrons
so,
80-35=45</span>
Answer:B
Explanation:
The early theory says that atom Is the smallest indivisible particle. Which was later proven to contain electron neutron and proton
Answer:
we need to know which atom you're talking about and then you need to say what the mass number is then we can tell how many electrons there are.
(I think)