Answer:Thermal energy to electric energy to light energy
The Joule, the BTU, and the calorie are units of energy,
in the form of heat or in any other form.
The Kelvin is a unit of temperature.
Answer: 
Explanation:
The <u>Heisenberg uncertainty principle</u> postulates that the fact each particle has a wave associated with it, imposes restrictions on the ability to determine its position and speed at the same time.
In other words:
It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Mathematically this principle is written as:
(1)
Where:
is the uncertainty in the position of the electron
is the Planck constant
is the mass of the electron
is the uncertainty in the velocity of the electron.
If we know the accuracy of the velocity is
of the velocity of the electron
, then
is:


(2)
Now, the least possible uncertainty in position
is:
(3)
(4)
Finally:
B
Bensbsbng f fudge dndjdjd d djdjdbd
Answer:
40·919 m
Explanation:
Initial velocity of the arrow = 46 m/s
Angle at which it is thrown from horizontal = 38°
<h3>At the maximum height, the vertical component of velocity will be 0</h3>
Initial velocity in vertical direction = 46 × sin(38) = 28·32 m/s
From the formula
<h3>v² - u² = 2 × a × s</h3>
where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
Considering the formula in vertical direction and taking upward direction as positive
v = 0
u = 28·32 m/s
a = - g = - 9·8 m/s²
Let s be the maximum height
- 28·32² = - 2 × 9.8 × s
⇒ s = 40·919 m
∴ The arrow will go 40·919 m high