Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.

What is the empirical formula?
Answer:
Hi, There!
- ,the empirical formula of a chemical is a simple expression of the relative number of each type of atom (called a chemical element)
- Empirical formula is defined as the formula of a compound which gives the simple whole number ratio of the atoms of various elements present in one molecule of compound.
Hope this Helps!

Potassium or any other metals.
<span>A dim white dwarf star, this is a star with a similar mass to earth. This star has no further fusion reactions at it's core. After this type of star has used up all of it's energy it will become a black dwarf star. Usually they are composed of oxygen and carbon. Sirius a and b are both white dwarf stars that orbit each other.</span>
Answer:
Partial pressure Ne = 340 Torr
Option B
Explanation:
Gases contained in the vessel:
N₂, Ar, He, Ne
One of Dalton's law for gases determine this:
In a mixture of gases contained in a vessel, total pressure of the system must be the sum of partial pressure of each gas.
Total pressure = 1100 Torr
Let's replace:
Partial pressure N₂ + Partial pressure Ar + Partial pressure He + Partial pressure Ne = 1100 Torr
Partial pressure Ne = 1100 Torr - Partial pressure N₂ - Partial pressure Ar -Partial pressure He
Partial pressure Ne = 1100 Torr - 110 Torr - 250 Torr - 400 Torr
Partial pressure Ne = 340 Torr