Answer : The energy removed must be, -67.7 kJ
Solution :
The process involved in this problem are :

The expression used will be:
![\Delta H=[m\times c_{p,g}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}+[m\times c_{p,l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bp%2Cg%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2Bm%5Ctimes%20%5CDelta%20H_%7Bvap%7D%2B%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released by the reaction = ?
m = mass of benzene = 125 g
= specific heat of gaseous benzene = 
= specific heat of liquid benzene = 
= enthalpy change for vaporization = 
Molar mass of benzene = 78.11 g/mole
Now put all the given values in the above expression, we get:
![\Delta H=[125g\times 1.06J/g.K\times (353.0-(425.0))K]+125g\times -434.0J/g+[125g\times 1.73J/g.K\times (335.0-353.0)K]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B125g%5Ctimes%201.06J%2Fg.K%5Ctimes%20%28353.0-%28425.0%29%29K%5D%2B125g%5Ctimes%20-434.0J%2Fg%2B%5B125g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28335.0-353.0%29K%5D)

Therefore, the energy removed must be, -67.7 kJ
Answer:
Here are three examples
Explanation:
In a reversible reaction, the conversions of reactants to products and of products to reactants occur at the same time.
Example 1
The reaction of hydrogen and iodine to from hydrogen iodide.
H₂ + I₂ ⇌ 2HI
Example 2
The dissociation of carbonic acid in water to form hydronium and hydrogen carbonate ions
H₂CO₃ + H₂O ⇌ H₃O⁺ + HCO₃⁻
Example 3
The dissociation of dinitrogen tetroxide to nitrogen dioxide.
N₂O₄ ⇌ 2NO₂
1. Write out the formula
Pb(NO3)2 (aq) + 2HCl (aq) ----> PbCl2 + 2HNO3
2. Use solubility guidelines (gotta memorize 'em) for the products to see if a solid forms
Nitrates are always soluble so 2HNO3 (aq)
Chlorides (Cl) are always soluble except for when you mix them with copper, lead, mercury, or silver.
Since you mixed it with lead (Pb) it is solid and forms a precipitate. PbCl2 (s)
Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
Answer:
substance
Explanation:
A mixture is when two or more <u>different</u> atoms/molecules are together, but not joined.
A substance is when the <u>same </u>atom/molecule is in a group together.
In this example, it is a substance because it is comprised of the same molecule not joined all together. If you wanted a mixture, other colored atoms/molecule (e.g. add green atoms) would change it to this property.