Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:
65.2L
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in this question,
P = 1.631 atm
V = ?
n = 4.3 moles
T = 28°C = 28 + 273 = 301K
Using PV = nRT
V = nRT/P
V = 4.3 × 0.0821 × 301 ÷ 1.631
V = 106.26 ÷ 1.631
V = 65.15
Volume of the gas = 65.2L
To determine whether an element is paramagnetic or diamagnetic, you need to examine the electron configuration of the element. If it has unpaired electrons, then the substance is paramagnetic. If the electrons are paired, then it is diamagnetic.
Answer:
the answer should be henry's law
3+
So, compounds of boron contain boron in a positive oxidation state, generally +3. The sum of oxidation numbers of all constituent atoms of a given molecule or ion is equal to zero or the charge of the ion, respectively. ... In most of the stable compounds of boron, its oxidation number is +3