Answer:
L = 2.83 J.s
Explanation:
The formula for the angular momentum of the stone is given as follows:
L = mvr
where,
L = angular momentum of the stone = ?
m = mass of the stone = 0.1 kg
v = linear velocity of the stone = rω
r = radius of circular path = 1.5 m
ω = angular speed of the stone = (2 rev/s)(2π rad/1 rev) = 4π rad/s
Therefore,
L = mvr = m(rω)r
L = mr²ω
using values, we get:
L = (0.1 kg)(1.5 m)²(4π rad/s)
<u>L = 2.83 J.s</u>
Answer:
r = 41.1 10⁹ m
Explanation:
For this exercise we use the equilibrium condition, that is, we look for the point where the forces are equal
∑ F = 0
F (Earth- probe) - F (Mars- probe) = 0
F (Earth- probe) = F (Mars- probe)
Let's use the equation of universal grace, let's measure the distance from the earth, to have a reference system
the distance from Earth to the probe is R (Earth-probe) = r
the distance from Mars to the probe is R (Mars -probe) = D - r
where D is the distance between Earth and Mars
M_earth (D-r)² = M_Mars r²
(D-r) =
r
r (
) = D
r =
We look for the values in tables
D = 54.6 10⁹ m (minimum)
M_earth = 5.98 10²⁴ kg
M_Marte = 6.42 10²³ kg = 0.642 10²⁴ kg
let's calculate
r = 54.6 10⁹ / (1 + √(0.642/5.98) )
r = 41.1 10⁹ m
It has to move through a distance over time.
The first one? If not I just guessed
If the ice absorbed 350,000 joules in 5 minutes, then it absorbed energy
at the rate of
(350,000 joules) / (5 x 60 seconds) =<em> 1,166-2/3 watts</em> .
Surely the ice cube didn't absorb every joule delivered to the cooking chamber,
so the microwave oven's cooking power had to be significantly more than that.