Answer: 405.3 minutes
Explanation: In order to explain this problem we have to use the following:
Fisrtly we calculate the volume of the wire, this is given by:
Vwire=π*r^2*L where r and L are the radius and L the length of teh wire, respectively.
Vwire=π*1.25*10^-3*0.26=1.27*10^-6 m^3
then the number of the total electrons in tthe wire volume is given by;
n° electrons in the wire=ρ*Vwire=8.4*10^28*1.27*10^-6 m^3=1.07 *10^23
Finally, considering the current in the wire equal to 4.4*10^18 electrons/s
the time consuming to extract all the electrons from the wire is given by:
t= total electrons in the wire/ current=1.067*10^23/4.4*10^18=24,318 s
equivalent to 405.3 minutes
Answer:
The boats are 934.65 feet apart
Explanation:
Given:
The angles of depression to the two boats are 42 degrees and 29 degrees
Height of the observation deck i = 1,353 feet
To Find:
How far apart are the boats (y )= ?
Solution:
<em><u>Step 1 : Finding the value of x(Refer the figure attached)</u></em>
We can use the tangent ratio to find the x value


x = 590.47 feet
<em><u>Step 2 : Finding the value of z (Refer the figure attached)</u></em>


z = 1525.12 feet
<em><u>Step 3 : Finding the value of y (Refer the figure attached</u></em>)
y = z -x
y = 1525.12 - 590.47
y = 934.65 feet
Thus the two boats are 934.65 feet apart
Answer:
as it travel through the space it behave like a wave and has an oscillating electric field components and an oscillating magnetic field
I think the answer should be the last one. Magnets attract magnets with unlike poles and repel magnets with like poles
Answer:
A.) 27000 kgm/s
18000 kgm/s
B.) Va = 22 m/s
C.) 19800 kgm/s
25200 kgm/s
Explanation: Given that the velocity of A and B are 30 m/s and 20 m/s. And of the same mass M = 9 × 10^5g
M = 9×10^5/1000 = 900 kg
A.) Initial momentum of A
Mu = 900 × 30 = 27000 kgm/s
Initial momentum of B
Mu = 900 × 20 = 18000 kgm/s
B.) if they have an accident and then the velocity of the B is 28 m/s, find out velocity of A.
Momentum before impact = momentum after impact
Given that Vb = 28 m/s
27000 + 18000 = 900Va + 900 × 28
45000 = 900Va + 25200
900Va = 45000 - 25200
900Va = 19800
Va = 19800/900
Va = 22 m/s
C.) Momentum of A after impact
MV = 900 × 22 = 19800 kgm/s
Momentum of B after impact
MV = 900 × 28 = 25200 kgm/s