Answer:
121.0 W
Explanation:
We use the equation for rate of heat transfer during radiation.
Q/t = σεA(T₂⁴ - T₁⁴)
Since temperature of surroundings = T₁ = -20.0°C = 273 +(-20) = 253 K, and temperature of skier's clothes = T₂ = 5.50°C = 273 + 5.50 = 278.5 K.
Surface area of skier , A = 1.60 m², emissivity of skier's clothes, ε = 0.70 and σ = 5.67 × 10⁻⁸ W/m²K⁴
.
Therefore, the rate of heat transfer by radiation Q/t is
Q/t = σεA(T₂⁴ - T₁⁴) = (5.67 × 10⁻⁸ W/m²K⁴
) × 0.70 × 1.60 m² × (278.5⁴ - 253⁴) = 6.3054 × (1918750544.0625) × 10⁻⁸ W = 1.2098 × 10² W = 120.98 W ≅ 121.0 W
The value of the final speed depends on the mass of the ore.
Let's call m the mass of the ore. We can solve the exercise by requiring the conservation of momentum, which must be the same before and after the ore is loaded.
Initially, there is only the cart, so the momentum is

After the ore is loaded, the new mass will be (1200 kg+m), and the new speed is

. The momentum p is conserved, so it is still 12960 kg m/s. Therefore, we have

and so the final speed is
Answer:
I'm pretty sure the answer is D
Explanation:
Honestly it's just a guess so let me know if it's right :3
longitude and latitude<span />
Answer:

Explanation:
Given that,
Mass of the object, m = 100 grams
Volume of the object, V = 20 cm³
We need to find the density of the object. We know that, density is equal to mass per unit volume. So,

So, the density of the object is equal to
.