Answer:
I believe it's either a or b but I'm pretty sure that it's a
Answer:
The final volume will be 24.7 cm³
Explanation:
<u>Step 1:</u> Data given:
Initial temperature = 180 °C
initial volume = 13 cm³ = 13 mL
The mixture is heated to a fina,l temperature of 587 °C
Pressure and amount = constant
<u>Step 2: </u>Calculate final volume
V1/T1 = V2/T2
with V1 = the initial volume V1 = 13 mL = 13*10^-3
with T1 = the initial temperature = 180 °C = 453 Kelvin
with V2 = the final volume = TO BE DETERMINED
with T2 = the final temperature = 587 °C = 860 Kelvin
V2 = (V1*T2)/T1
V2 = (13 mL *860 Kelvin) /453 Kelvin
V2 = 24.68 mL = 24.7 cm³
The final volume will be 24.7 cm³
The correct answer to the question above is heat. Most of the energy from a lower trophic level is converted into heat. When an organism from a higher trophic level consumed an organism from a lower trophic level, it is mostly heat that is being converted to.
Answer:
Electrostatic Van de Waals forces act between molecules to form weak bonds. The types of Van der Waals forces, strongest to weakest, are dipole-dipole forces, dipole-induced dipole forces and the London dispersion forces. The hydrogen bond is based on a type of dipole-dipole force that is especially powerful. These forces help determine the physical characteristics of materials.