The volume (in liters) that the gas will occupy if the pressure is increased to 13.5 atm and the temperature is decreased to 15 °C is 15 L
From the question given above, the following data were obtained:
Initial pressure (P₁) = 8.5 atm
Initial volume (V₁) = 24 L
Initial temperature (T₁) = 25 °C = 25 + 273 = 298 K
Final pressure (P₂) = 13.5 atm
Final temperature (T₂) = 15 °C = 15 + 273 = 288 K
<h3>Final volume (V₂) =? </h3>
- The final volume of the gas can be obtained by using the combined gas equation as illustrated below:

Cross multiply
298 × 13.5 × V₂ = 204 × 288
4023 × V₂ = 58752
Divide both side by 4023

<h3>V₂ = 15 L </h3>
Therefore, the final volume of the gas is 15 L
Learn more: brainly.com/question/25547148
Explanation:
Expression for the
speed is as follows.

where,
= root mean square speed
k = Boltzmann constant
T = temperature
M = molecular mass
As the molecular weight of oxygen is 0.031 kg/mol and R = 8.314 J/mol K. Hence, we will calculate the value of
as follows.

= 
= 498.5 m/s
Hence,
for oxygen atom is 498.5 m/s.
For nitrogen atom, the molecular weight is 0.028 kg/mol. Hence, we will calculate its
speed as follows.

= 
= 524.5 m/s
Therefore,
speed for nitrogen is 524.5 m/s.
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer: choice B
Explanation: Heat flows from high to low. After you convert the Celsius into kelvin the Zn pellet has 323K and the water has 301K which results the transfer of the heat energy of the pallet to the water. ( you don’t have to convert, but it just make it easier) hope this helped you :)