Answer:
Two non bonded electron pairs and four bonded electron pairs
Explanation:
An image of the compound as obtained from chemlibretext is attached to this answer.
The ion ICl4- ion, is an AX4E2 ion. This implies that there are four bond pairs and two lone pairs of electrons. As expected, the shape of the ion is square planar since the lone pairs are found above and below the plane of the square. This is clear from the image attached.
The oxidation state of the elements in the compounds are:
CoH₂:
FeBr₃:
<h3>What is the oxidation states of the elements in the given compounds?</h3>
The oxidation states of the elements in each of the given compounds is determined as follows:
Cobalt dihydride, CoH₂
Co = +2
H = -1
Iron (iii) bromide, FeBr₃
Fe = +3
Br = -1
In conclusion, the oxidation state of the elements are charges they have in the compound.
Learn more about oxidation state at: brainly.com/question/27239694
#SPJ1
Answer:
the solubility of CaCO3 is 0.015g/l 25 °C
is favored at equilibrium
Explanation:
The Ksp of calcium carbonate in water at 25 °C is 2.25 x 10-8. CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq) What is favored at equilibrium?
solubility is the property of a solute to dissolve in a solvent(liquid, gas ) to form a solution(soution can be saturated ,unsaturated, or supersaturated)
CaCO3(s) <----> Ca2+ (aq) + CO3 2- (aq)
in partial dissociation , we can say
2.25x 10^-8=
let Ca^2+=CO3^-2=S
2.25x10^-8=S*S
S^2=2.25x10^-8
S=0.00015mol/L
Converting that to g/l
the relative molecular mass of CaCO3=100g/mol
0.00015*100g/mol
0.015g/l
the solubility of CaCO3 is 0.015g/l @room temperature
is favored at equilibrium
Answer:
XCH₄ = 0.461
XCO₂ = 0.539
Explanation:
Step 1: Given data
- Partial pressure of methane (pCH₄): 431 mmHg
- Partial pressure of carbon dioxide (pCO₂): 504 mmHg
Step 2: Calculate the total pressure in the container
We will sum both partial pressures.
P = pCH₄ + pCO₂
P = 431 mmHg + 504 mmHg = 935 mmHg
Step 3: Calculate the mole fraction of each gas
We will use the following expression.
Xi = pi / P
XCH₄ = pCH₄/P = 431 mmHg/935 mmHg = 0.461
XCO₂ = pCO₂/P = 504 mmHg/935 mmHg = 0.539
When the Pka for formic acid = 3.77
and Pka = -㏒ Ka
3.77 = -㏒ Ka
∴Ka = 1.7x10^-4
when Ka = [H+][HCOO-}/[HCOOH]
when we have Ka = 1.7x10^-4 &[HCOOH] = 0.21 m
so by substitution: by using ICE table value
1.7x10^-4 = X*X / (0.21-X)
(1.7x10^-4)*(0.21-X) = X^2 by solving this equation for X
∴X = 0.0059
∴[H+] = 0.0059
∴PH= -㏒ [H+]
= -㏒ 0.0059
= 2.23