Answer:
1.0 ° C
Explanation:
The molar mass for Sodium Nitrate NaNO₃ = (23+14+(16×3)) = 85
Number of moles of NaNO₃ = mass of NaNO₃ /molar mass of NaNO₃
⇒ 17/85 = 1.38 moles
Since 1 mole of NaNO₃ dissolved in 1 cubic decimeter of water, 40 kJ of heat energy is absorbed.
when 1.38 mole of NaNO₃ dissolved in 1 cubic decimeter of water, x kJ of heat energy is absorbed..
Then; x kJ of 1.38 mole of NaNo₃ = 1.38 × 40 kJ =55.2 kJ of heat absorbed.
Using the relation : Q = mcΔT to determine the temperature drop ; we get:
55.2 = 17 × 4 (ΔT)
55.2 = 68 ΔT
ΔT= 0.8 ° C
ΔT ≅ 1.0 ° C
Therefore, the drop in temperature when 17.0g of sodium nitrate is dissolved in 1 cubic decimeter of water is 1.0 ° C
I thinking the limitation is that a shifting electron will always move from a more excited states to a less excited state. Electrons could not circle the nucleus because they would lose energy by emitting electromagnetic radiation and spiral into the nucleus. In addition Bohr was not able to explain electrons orbits of large atom w/many electrons.
Answer:
NH₃ (Option A)
Explanation:
Arrhenius theory explained that the acids are the ones that have H⁺, either H in its formula. Following this, the bases are the ones that have OH⁻ , either OH and its formula.
It can be used only with compounds with H, or OH.
So the ammonia is not a base, as Arrhenius theory.
It is known that ammonia behaves as a weak base, but it does not have hydroxide ions that can yield to water
You know that you can just google it right? It has this converter.