If you have a magnesium for every oxygen, then you have to start with two magnesiums. So the balanced equation is 2 Mg + O2 2 MgO.
And
CaCO3———→CaO + CO2
I hope it helped!
Answer:
11.8.4 Distillation Columns
Distillation columns present a hazard in that they contain large inventories of flammable boiling liquid, usually under pressure. There are a number of situations which may lead to loss of containment of this liquid.
The conditions of operation of the equipment associated with the distillation column, particularly the reboiler and bottoms pump, are severe, so that failure is more probable.
The reduction of hazard in distillation columns by the limitation of inventory has been discussed above. A distillation column has a large input of heat at the reboiler and a large output at the condenser. If cooling at the condenser is lost, the column may suffer overpressure. It is necessary to protect against this by higher pressure design, relief valves, or HIPS. On the other hand, loss of steam at the reboiler can cause underpressure in the column. On columns operating at or near atmospheric pressure, full vacuum design, vacuum breakers, or inert gas injection is needed for protection. Deposition of flammable materials on packing surfaces has led to many fires on opening of distillation column for maintenance.
Another hazard is overpressure due to heat radiation from fire. Again pressure relief devices are required to provide protection.
The protection of distillation columns is one of the topics treated in detail in codes for pressure relief such as APIRP 521. Likewise, it is one of the principal applications of trip systems.
Another quite different hazard in a distillation column is the ingress of water. The rapid expansion of the water as it flashes to steam can create very damaging overpressures.
Answer:
Option-A is the correct answer
Explanation:
Lithium belong to group 1 metals. Hence, it can loose one electron to form lithium ion i.e. Li⁺¹ or Li⁺
While, Nitrogen is non-metal and hence has the ability to gain the electron lost by lithium metal. Furthermore, Nitrogen can gain maximum 3 electrons to acheive noble gas configuration. Hence, three Li atoms will loose their electrons and Nitrogen will gain those three electrons to form nitride ion i.e. N³⁻.
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
For a voltaic cell consisting of chromium, an electrode dipped in a 1.20 M chromium (III) nitrate solution and a tin electrode dipped in a 0.400 M tin (II) nitrate solution, the cell potential at 298 K is mathematically given as
Ecell = 0.577 V
<h3 /><h3>What is the cell potential at 298 K?</h3>
Generally, the equation for the Oxidation and Reduction is mathematically given as
Cr(s) ------------------ Cr+3(aq) + 3e- ] x 2 ...O
Sn+2(aq) + 2e- ------------ Sn(s) ] x 3 ...R
Reaction
2 Cr(s) + 3 Sn+2(aq) --------------- 2 Cr+3(aq) + 3 Sn(s)
Therefore
Eicell = - 0.14 - ( - 0.74)
Eicell = 0.60
In conclusion
![Ecell= E0cell - \frac{0.0591}{n} * \frac{log[Cr+3]^2}{ [ Sn+2]^3}](https://tex.z-dn.net/?f=Ecell%3D%20E0cell%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20%2A%20%5Cfrac%7Blog%5BCr%2B3%5D%5E2%7D%7B%20%5B%20Sn%2B2%5D%5E3%7D)

Ecell = 0.577 V
Read more about Temperature
brainly.com/question/13439286