ITS B. FASHO that’s what I’m think
<span>Which of the following gases would be most likely to experience ideal behavior at high pressures?
a. F2
b. Ne
c. C2H6
Yes. The answer is (b) Ne (Neon). This is because monoatomic gases such as neon do not experience </span><span>intermolecular attractions and thus most likely to be close to ideal gases behavior. Not only that, Neon is a noble gas and is unreactive. </span>
False you should never taste something if you don’t know what it is
Answer:
(a) 77.9 g/mol
(b) 3.18 g / L
Explanation:
<u>(a)</u> We need to use the ideal gas law, which states: PV = nRT, where P is the pressure, V is the volume, n is the moles, R is the gas constant, and T is the temperature in Kelvins.
Notice that we don't have moles; we instead have the mass. Remember, though that moles can be written as m/M, where m is the mass and M is the molar mass. So, we can replace n in the equation with m/M, or 21.3/M. The components we now have are:
- P: 0.880 atm
- V: 7.73 Litres
- n: m/M = 21.3 g / M
- R: 0.08206
- T: 30.00°C + 273 = 303 K
Plug these in:
PV = nRT
(0.880)(7.73) = (21.3/M)(0.08206)(303)
Solve for M:
M = 77.9 g/mol
<u>(b)</u> The equation for the molar mass is actually:
M = (dRT)/P, where d is the density
We have all the components except d, so plug them in:
77.9 = (d * 0.08206 * 298) / 1
Solve for d:
d = 3.18 g / L