Answer:
Average force = 67 mn
Explanation:
Given:
Initial velocity u = 0 m/s
Final velocity v = 67 m/s
Time t = 1 ms = 0.001 sec.
Computation:
Using Momentum theory
Change in momentum = F × Δt
(v-u)/t = F × Δt
F × 0.001 = (67 - 0)/0.001
F= 67,000,000
Average force = 67 mn
If a theory is studied in let's say the 17th century, the theory has had many years to be studied and explained by many different people many different ways.
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
Answer:
3,200 ounces
Explanation:
1 pound (lb) is equal to 16 ounces (oz):
i.e 1 lb = 16 oz
Given:
200 pounds
To find:
2,000 pounds as ounces.
Steps:
200 (mass) * 16 = 3,200 ounces.
Thank you!
- EE