1) Chemical reaction 1: 4Cu + O₂ → 2Cu₂O.
n(Cu) = 88,8 ÷ 63,55.
n(Cu) = 1,4.
n(O) = 11,2 ÷ 16.
n(O) = 0,7.
n(Cu) : n(O) = 1,4 : 0,7.
n(Cu) : n(O) = 2 : 1.
Compound is Cu₂O.
2) Chemical reaction 2: 2Cu + O₂ → 2CuO.
n(Cu) = 79,9 ÷ 63,55.
n(Cu) = 1,257.
n(O) = 20,1 ÷ 16.
n(O) = 1,257.
n(Cu) : n(O) = 1,257 : 1,257.
n(Cu) : n(O) = 1 : 1.
Compound is CuO.
C most likely sorry if I’m wrong
Answer:
Primero debes usar los gramos de co2 y luego buscar su peso molecular, luego de eso usar la relación de moles entre CO2 y H2O y por último buscar el pm del H2O pata ver cuantos gramos de produce.
Explanation:
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418