Answer:
Solar energy absorbed at Earth’s surface is radiated back into the atmosphere as heat. As the heat makes its way through the atmosphere and back out to space, greenhouse gases absorb much of it. Why do greenhouse gases absorb heat? Greenhouse gases are more complex than other gas molecules in the atmosphere, with a structure that can absorb heat. They radiate the heat back to the Earth's surface, to another greenhouse gas molecule, or out to space.
There are several different types of greenhouse gases. The major ones are carbon dioxide, water vapor, methane, and nitrous oxide. These gas molecules all are made of three or more atoms. The atoms are held together loosely enough that they vibrate when they absorb heat. Eventually, the vibrating molecules release the radiation, which will likely be absorbed by another greenhouse gas molecule. This process keeps heat near the Earth’s surface. Most of the gas in the atmosphere is nitrogen and oxygen, which cannot absorb heat and contribute to the greenhouse effect.
Explanation:
Answer:
Sucrose to is the substrate of the reaction because is a simple sugar( disaccharide) which produce glucose and fructose in the presence of sucrase or when it is hydrolysed.
Answer:
Explanation:
= Mass of metal = 19 g
= Specific heat of the metal
= Temperature difference of the metal =
V = Volume of water = 150 mL =
= Density of water =
= Specific heat of the water = 4.186 J/g°C
= Temperature difference of the water =
Mass of water
Heat lost will be equal to the heat gained so we get
The specific heat of the metal is .
The equation for carbon-14 emission by Radium-223 nuclei is given below:
<h3>What is radioactivity?</h3>
Radioactivity is the spontaneous decay of a substance with emission of radiation.
The equation for carbon-14 emission by Radium-223 nuclei is given below:
In conclusion, the emission of carbon-14 by Radium-223 nuclei produces Lead-209 nuclei.
Learn more about radioactivity at: brainly.com/question/3603596
#SPJ1
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731