<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of nickel (II) acetate and potassium hydroxide is given as:

Ionic form of the above equation follows:

As, acetate and potassium ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
Explanation:
will dissociate into ions as follows.

Hence,
for this reaction will be as follows.
![K_{sp} = [Pb^{2+}][Br^{-}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BPb%5E%7B2%2B%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D)
We take x as the molar solubility of
when we dissolve x moles of solution per liter.
Hence, ionic molarities in the saturated solution will be as follows.
=
+ x
=
+ 2x
So, equilibrium solubility expression will be as follows.
=
Each sodium bromide molecule is giving one bromide ion to the solution. Therefore, one solution contains
= 0.10 and there will be no lead ions. So,
= 0
So,
will approximately equals to
.
Hence, ![K_{sp} = x[Br^{-}]^{2}_{o}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20x%5BBr%5E%7B-%7D%5D%5E%7B2%7D_%7Bo%7D)

x =
M
Thus, we can conclude that molar solubility of
is
M.
Answer:
4.525% is the percentage by volume of oxygen in the gas mixture.
Explanation:
Total pressure of the mixture = p = 4.42 atm
Partial pressure of the oxygen = 
Partial pressure of the helium = 
(Dalton law of partial pressure)





According Avogadro law:
(At temperature and pressure)
Volume occupied by oxygen gas =
Total moles of gases = n = 1 mol
Total Volume of the gases = V


Percent by volume of oxygen in the gas mixture:

Answer:
Addition of a catalyst can speed up a reaction by providing an alternate reaction pathway that has a lower activation energy
Explanation:
A catalyst is an agent that increases the rate of a chemical reaction by providing an alternate pathway for the reaction that requires a lower activation energy. As the requirement for activation energy is less in the presence of a catalyst, there are more reactant particles becoming involved in the chemical reaction and as such there are more products formed per unit time, or there is an increase in the rate of the reaction
Example of catalyst include
1. Addition of potassium permanganate to hydrogen peroxide to aid in the rapid decomposition into water and oxygen
2. Platinum serves as a catalyst in the complete combustion of carbon monoxide into carbon dioxide.
Using this equation, we can take 25/(1.0 + 19) and find that it is equal to 1.25 moles.