![\bf a^{-{ n}} \implies \cfrac{1}{a^{ n}}\qquad \qquad \cfrac{1}{a^{ n}}\implies a^{-{ n}} \\ \quad \\ % negative exponential denominator a^{{ n}} \implies \cfrac{1}{a^{- n}} \qquad \qquad \cfrac{1}{a^{- n}}\implies \cfrac{1}{\frac{1}{a^{ n}}}\implies a^{{ n}} \\\\ -----------------------------\\\\ \cfrac{4xy}{mn^5}\implies \cfrac{4xy}{1}\cdot \cfrac{1}{m^1}\cdot \cfrac{1}{n^5}\implies 4xym^{-1}n^{-5}](https://tex.z-dn.net/?f=%5Cbf%20%20a%5E%7B-%7B%20n%7D%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B%20n%7D%7D%5Cqquad%20%5Cqquad%0A%5Ccfrac%7B1%7D%7Ba%5E%7B%20n%7D%7D%5Cimplies%20a%5E%7B-%7B%20n%7D%7D%0A%5C%5C%20%5Cquad%20%5C%5C%0A%25%20%20negative%20exponential%20denominator%0Aa%5E%7B%7B%20n%7D%7D%20%5Cimplies%20%5Ccfrac%7B1%7D%7Ba%5E%7B-%20n%7D%7D%0A%5Cqquad%20%5Cqquad%20%0A%5Ccfrac%7B1%7D%7Ba%5E%7B-%20n%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5Cfrac%7B1%7D%7Ba%5E%7B%20n%7D%7D%7D%5Cimplies%20a%5E%7B%7B%20n%7D%7D%20%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7B4xy%7D%7Bmn%5E5%7D%5Cimplies%20%5Ccfrac%7B4xy%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bm%5E1%7D%5Ccdot%20%5Ccfrac%7B1%7D%7Bn%5E5%7D%5Cimplies%204xym%5E%7B-1%7Dn%5E%7B-5%7D)
notice, all you do is, move the factor from the bottom to the top, or from the top to the bottom, and the sign changes, from negative to positive or the other way around, is all there's on that
Answer:
A
Step-by-step explanation:
● first one:
The diagonals of a rhombus are perpendicular to each others wich means that they form four right angles.
STP is one of them so this statement is true.
● second one:
If ST and PT were equal this would be a square not a rhombus.
● third one:
If SPQ was a right angle, this woukd be a square.
● fourth one:
Again if the diagonals SQ and PR were equal, this would be a square.
Answer: The answer is A and D
Step-by-step explanation: If you go through all the problems, just replace "b" with "(4)" into a calculator. For A and D, they both equaled 180.
Answer:
![1.16*10^{-1}](https://tex.z-dn.net/?f=1.16%2A10%5E%7B-1%7D)
Step-by-step explanation:
![(5.8*10^{-6}) *(2*10^{4})\\=11.6*10^{-2}\\=1.16*10^{-1}](https://tex.z-dn.net/?f=%285.8%2A10%5E%7B-6%7D%29%20%2A%282%2A10%5E%7B4%7D%29%5C%5C%3D11.6%2A10%5E%7B-2%7D%5C%5C%3D1.16%2A10%5E%7B-1%7D)