<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years
Answer:
1. a receptacle in a church for the water used in baptism, typically a freestanding stone structure.
2. A type of writing or text style
Explanation:
There are mutiple definitions of font
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium<span> is reached, i.e. until their temperatures are equal. We say that </span>heat<span>flows from the hotter to the cooler object. </span><span>Heat is energy on the move.</span> <span>
</span>Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
By decreasing n we can increase presure because decrease in n will shift equilibrium to either forward or reverse direction