1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
9

A pendulum built from a steel sphere with radius r cm 5 and density stl kg m S 3 7800 is attached to an aluminum bar with length

l m 1 thickness t cm 0 8. and width w cm 4 and density . al kg m S 3 2820 a. Calculate the mass moment of inertia of the pendulum about its center of mass, . cm I b. Calculate the mass moment of inertia of the pendulum about its pivot point, o I .
Physics
1 answer:
Ad libitum [116K]3 years ago
8 0

Answer:

a)  I = 0.0198 kg m² ,  b)    I = 21.85 kg m²

Explanation:

For this exercise we will use the definition of moment of inertia

        I = ∫ r² dm

For body with high symmetry they are tabulated

sphere  I = 2/5 m r²

bar with respect to  center of mass I = 1/12 m L²

let's calculate the mass of each body

bar

        ρ = m / V

        m = ρ V

        m = ρ l w h

where we are given the density of the bar rho = 32840 kg / m³ and its dimensions 1 m, 0.8 cm and 4 cm

        m = 32820 1 0.008 0.04

        m = 10.5 kg

Sphere

       M = ρ V

       V = 4/3 pi r³

       M = rgo 4/3 π r³

give us the density 37800 kg / m³ and the radius of 5 cm

       M = 37800 4/3 π 0.05³

       M = 19.8 kg

a) asks us for the moment of inertia of the sphere with respect to its center of mass

        I = 2/5 M r²

        I = 2/5 19.8 0.05²

        I = 0.0198 kg m²

b) the moment of inertia with respect to the turning point, for this we will use the theorem of parallel axes

        I = I_cm + M d2

where d is the distance from the body to the point of interest

        I_cm = 0.0198 kg m²

the distance to the pivot point is

        l = length of the bar + radius of the sphere

        l = 1 + 0.05 = 1.005 m

        I = 0.0198 + 19.8 1.05²

        I = 21.85 kg m²

You might be interested in
The bar graph shows energy data taken from a roller coaster at a theme park. analyze the data and assess its validity. 3-5 sente
hichkok12 [17]

This question involves the concepts of the law of conservation of energy, potential energy, and kinetic energy.

The data shown by the bar graph is "valid".

According to the law of conservation of energy, the total energy of the system must remain constant at any given point. Hence, the sum of the kinetic energy and the potential energy of the roller coaster must be constant at any given time.

Considering the bottom of the first hill:

Total Energy at 1st Hill = Kinetic Energy + Potential Energy

From the data given in the bar graph:

Total Energy at 1st Hill = 2,500,000 J + 0 J (since at the bottom potential energy is zero due to zero height)

Total Energy at 1st Hill = 2,500,000 J

Now, considering the top of the second hill:

Total Energy at 2nd Hill = Kinetic Energy + Potential Energy

From the data given in the bar graph:

Total Energy at 2nd Hill = 1,000,000 J + 1,500,000 J

Total Energy at 2nd Hill = 2,500,000 J

Hence,

Total Energy at 1st Hill = Total Energy at 2nd Hill

Therefore, the given bar graph is "valid".

Learn more about the law of conservation of energy here:

brainly.com/question/20971995?referrer=searchResults

The attached picture explains the law of conservation of energy.

4 0
3 years ago
NEED HELP
ch4aika [34]

Answer: C.

Explanation:

Just took quiz

8 0
3 years ago
Find the angle of refraction of a ray of light that enters a diamond (n=2.419) from air at an angle of 18.0° to the normal. ONLY
Tpy6a [65]

Answer:

n

Explanation:

hb

3 0
4 years ago
How do I calculate the tension in the horizontal string?
matrenka [14]

ANSWER

T₂ = 10.19N

EXPLANATION

Given:

• The mass of the ball, m = 1.8kg

First, we draw the forces acting on the ball, adding the vertical and horizontal components of each one,

In this position, the ball is at rest, so, by Newton's second law of motion, for each direction we have,

\begin{gathered} T_{1y}-F_g=0_{}_{}_{} \\ T_2-T_{1x}=0 \end{gathered}

The components of the tension of the first string can be found considering that they form a right triangle, where the vector of the tension is the hypotenuse,

\begin{gathered} T_{1y}=T_1\cdot\cos 30\degree \\ T_{1x}=T_1\cdot\sin 30\degree \end{gathered}

We have to find the tension in the horizontal string, T₂, but first, we have to find the tension 1 using the first equation,

T_1\cos 30\degree-m\cdot g=0

Solve for T₁,

T_1=\frac{m\cdot g}{\cos30\degree}=\frac{1.8kg\cdot9.8m/s^2}{\cos 30\degree}\approx20.37N

Now, we use the second equation to find the tension in the horizontal string,

T_2-T_1\sin 30\degree=0

Solve for T₂,

T_2=T_1\sin 30\degree=20.37N\cdot\sin 30\degree\approx10.19N

Hence, the tension in the horizontal string is 10.19N, rounded to the nearest hundredth.

8 0
1 year ago
A worker drives a 0.562 kg spike into a rail tie with a 2.26 kg sledgehammer. The hammer hits the spike with a speed of 64.4 m/s
zubka84 [21]

Answer:

Explanation:

Given that,

Mass of sledge hammer;

Mh =2.26 kg

Hammer speed;

Vh = 64.4 m/s

The expression fot the kinetic energy of the hammer is,

K.E(hammer) = ½Mh•Vh²

K.E(hammer) = ½ × 2.26 × 64.4²

K.E ( hammer) = 4686.52 J

If one forth of the kinetic energy is converted into internal energy, then

ΔU = ¼ × K.E(hammer)

∆U = ¼ × 4686.52

∆U = 1171.63 J

Thus, the increase in total internal energy will be 1171.63 J.

4 0
4 years ago
Other questions:
  • The diagram shows a trace of a wave on a cathode-ray oscilloscope.
    14·1 answer
  • Explain ways that weak and strong nuclear forces are alike.
    13·1 answer
  • Arrange the distances between Earth and various celestial objects in order from least to greatest. Use the conversion table to h
    8·1 answer
  • Is a root made up of three layers?
    9·1 answer
  • Stored energy or energy of position that can be released or harnessed to do work
    9·1 answer
  • Suppose that instead of dropping the rock you throw it downwards so that its speed after falling 7 meters is 23.43 m/s. How much
    9·2 answers
  • Which of the following scenerios fits all of the criteria for the two-source interference equations to be valid?
    5·1 answer
  • What does wap stand for? correct answer gets brainliest. NO LOOKING IT UP! THIS IS A TRIVIA!!
    9·2 answers
  • Please help me with this
    6·1 answer
  • what minimum volume must the slab have for a 42.0 kg woman to be able to stand on it without getting her feet wet?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!