Answer:
Explanation:
Given
Radius of bicycle wheel 
Initial angular velocity 
It rotates 3 revolution in 5 s therefore

using 
where 



Total acceleration of any point will be a vector sum of tangential acceleration and centripetal acceleration




Tangential acceleration 




The term for the process by which a portion of a glacier breaks off and falls into the water is called calving.
<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
R2 = 10.31Ω
Explanation:
For two resistors in parallel you have that the equivalent resistance is:
(1)
R1 = 13 Ω
R2 = ?
The equivalent resistance of the circuit can also be calculated by using the Ohm's law:
(2)
V: emf source voltage = 23 V
I: current = 4 A
You calculate the Req by using the equation (2):

Now, you can calculate the unknown resistor R2 by using the equation (1):

hence, the resistance of the unknown resistor is 10.31Ω
A ball kept on 3rd floor of a building.
A pendulum bob kept at 3m height
A stone thrown vertically upward.
A pressed spring.
A squashed spunge ball.