Answer:
30 m/s
Explanation:
Speed is distance over time. 60 meters / 2 seconds, = 30 m/s.
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
For part a we can use the kinematic formula distance= velocity(initial)*time+1/2*acceleration*time^2
we know there is only velocity in the horizontal and none in the vertical so v initial in this case is 0, acceleration is gravity =9.81m/s^2
plug in .95=(1/2)*9.81*t^2 solve for t
t=.44seconds
Now for part b we know there is no horizontal acceleration so distance= velcoity* time
we will use horrizontial velocity and the time we just found
distance= .8m/s*.44seconds
=.35 meters
The amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal on the top and the bottom is 0.1 cm thick and the metal on the sides is 0.05 cm thick is 8.8 cm.
The formula for calculating the volume of a cylinder is given below.
V = πr^2 h
Get the differential of the volume as shown:
dV = V/ h dh + V / r dr
V/ h = πr^2
V/ h = 2 πr h
Now, the differential becomes
dV = πr^2dh + 2πrh dr
Given the following parameters i.e. diameter and height
dh = 0.1 + 0.1 = 0.2 cm
dr = 0.05 cm
h = 10 cm
d = 4 cm
r = 2cm
Substituting the values in the above equation, we get
dV = 3.14(2)^2(0.2) + 2(3.14)(2)(10)(0.05)
dV = 2.512 + 6.28
dV = 8.792 cm
dV = 8.8 cm
If you need to learn more about diameter click here:
brainly.com/question/16813738
#SPJ4