Answer:
if the earth stops rotating the value of g increases
Answer:
The acceleration is: 
Explanation:
To answer this, we need to recall Newton's Second Law of motion, that states that an object of mass m would accelerate (change its state of uniform motion) proportional to the force (F) that is applied , and exemplified by the following equation:

From here, and using the given values for mass (m = 3 kg) and force (F = 9 N), we can derive the value of the acceleration as shown below (notice that since all quantities are given in SI units, the resulting acceleration will also be in Si units (
):

The average thickness of a sheet of the paper is 0.1 mm.
The number of ice blocks that can be stored in the freezer is 80 blocks of ice.
<h3>Average thickness of a sheet of the paper</h3>
The average thickness of a sheet of the paper is calculated as follows;
average thickness = 6 mm/60 sheets = 0.1 mm /sheet
Thus, the average thickness of a sheet of the paper is 0.1 mm.
<h3>Volume of each block of ice</h3>
Volume = 10 cm x 10 cm x 4 cm
Volume = 400 cm³
<h3>Volume of the freezer</h3>
Volume = 40 cm x 40 cm x 20 cm = 32,000 cm³
<h3>Number of ice blocks that can be stored</h3>
n = 32,000 cm³/400 cm³
n = 80 blocks of ice
Thus, the number of ice blocks that can be stored in the freezer is 80 blocks of ice.
Learn more about average thickness here: brainly.com/question/24268651
#SPJ1
Answer:
the speed of the block at the given position is 21.33 m/s.
Explanation:
Given;
spring constant, k = 3500 N/m
mass of the block, m = 4 kg
extension of the spring, x = 0.2 m
initial velocity of the block, u = 0
displacement of the block, d =1.3 m
The force applied to the block by the spring is calculated as;
F = ma = kx
where;
a is the acceleration of the block

The final velocity of the block at 1.3 m is calculated as;
v² = u² + 2ad
v² = 0 + 2ad
v² = 2ad
v = √2ad
v = √(2 x 175 x 1.3)
v = 21.33 m/s
Therefore, the speed of the block at the given position is 21.33 m/s.