Answer:

Explanation:
We have an uniformly accelerated motion, with a negative acceleration. Thus, we use the kinematic equations to calculate the distance will it take to bring the car to a stop:

The acceleration can be calculated using Newton's second law:

Recall that the maximum force of friction is defined as
. So, replacing this:

Now, we calculate the distance:

The deeper you go, the more rock must be supported so the more force is required and the pressure goes up.
It depends on mass and distance.
We know that
• The mass of the elevator is 5000 kg.
Let's draw a free-body diagram.
As you can observe, there are just two forces involved, the weight of the elevator and the tension force. Let's use Newton's Second Law.

But, W = mg = 5000kg*9.8m/s^2 = 49,000 N, and m = 5000 kg, a = 0 (because the speed is constant).

<h2>Therefore, the tension in the cable is 49,000 N.</h2>
I would say true. If you are calculating using vectors than it would need both...