Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
Streams carry sediment, like pebbles, in their flows. The pebbles can be in a variety of locations in the flow, depending on it's size, the balance between the upwards velocity on the pebble (drag and lift forces), and it's settling velocity.
Answer:
They both rises to same height.
Explanation:
When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.
Here the height is independent on the mass of an object and its only depend on velocity.
Now according to the question, two objects have same velocity but they have different masses.
Therefore, they rises to the same height because height will not change with mass.
Answer:
<h2>3.36J</h2>
Explanation:
Step one:
given data
mass m= 1.3kg
distance moved s= 2.8m
opposing frictional force= 0.34N
assume g= 9.81m/s^2
we know that work done= force *distance moved
1. work done to push the book= 1.55*2.8=4.34J
2. Work against friction = force of friction x distance
= 0.34*2.8=0.952J
Step two:
the work done on the book is the net work, which is
Network done= work done to push the book- Work against friction
Network done= 4.32-0.952=3.36J
<u>Therefore the work of the 1.55N 3.36J</u>
Answer:
3.67 km
Explanation:
Joe distance towards coffee shop is,

And the Max distance towards bookstore is,

Now the distance between the Joy and Max will be,
By applying pythagorus theorem,

Substitute 0.40 km for OB and 3.65 km for OA in the above equation.

Therefore the distance between there destination is 3.67 km.