I think it occurs whenever waves come together so that they are in phase with each other.
F(g)= Gm1m2/ r^2
If mass is increased, so will the force of gravity because it is in direct relationship with the gravitational force, but if distance is increased, the force of gravity will decrease because it is indirectly related ( since it is on the bottom of the equation)
Answer:
you need to multiply the momentum and the mass
Answer:
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).
Explanation:
The gravitational force is the force of mutual attraction that two objects with mass experience.
The Law of Universal Gravitation enunciated by Newton says that every material particle attracts any other material particle with a force directly proportional to the product of their masses and inversely proportional to the square of the distance that separates them. Mathematically this is expressed as:

where m1 and m2 are the masses of the objects, r the distance between them and G a universal constant that receives the name of constant of gravitation.
If the distance between two particles is reduced by half, then, where F' is the new value of the gravitational force:




F'=4*F
<u><em>
The gravitational potential energy between two particles, if the distance between them is halved, is multiplied by 4 (option c).</em></u>