Answer:
The input force (effort) is the amount of effort used to push down on a rod, or pull on a rope in order to move the weight. In this example, the force the little guy is using to pull the elephant is the input force.
Explanation:
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
(6) Wagon B is at rest so it has no momentum at the start. If <em>v</em> is the velocity of the wagons locked together, then
(140 kg) (15 m/s) = (140 kg + 200 kg) <em>v</em>
==> <em>v</em> ≈ 6.2 m/s
(7) False. If you double the time it takes to perform the same amount of work, then you <u>halve</u> the power output:
<em>E</em> <em>/</em> (2<em>t </em>) = 1/2 × <em>E/t</em> = 1/2 <em>P</em>
<em />
Mechanical energy is the sum of kinetic energy and potential energy