Answer: North
Explanation: I believe the friction will go the opposite way of the object being pushed.
Hello!
In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy.
This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending.
The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device.
Answer:
Speed, v = 7.83 m/s
Explanation:
It is given that,
Length of the bridge, l = 5 m
The road on the far side is 2.0 m lower than the road on this side, x = 2 m
The horizontal distance covered by the car is 5 meters and the vertical distance covered by the car is 2 meters.
Initial speed of the car, u = 0
Let t is the time taken by the car . Using the second equation of motion as :
For vertical distance :


Let v is the velocity to jump the stream. It is given by :
Horizontal distance, d = 5 m

v = 7.83 m/s
So, the car should travel with a speed of 7.83 m/s. Hence, this is the required solution.
Answer: a. Place the object on one side of a lever at a known distance away from the fulcrum. Place known masses on the other side of the fulcrum so that they are also paced on the lever at known distance from the fulcrum. Move the known masses to a known distance such that the lever is in static equilibrium.
d. Place the object on the end of a vertically hanging spring with a known spring constant. Allow the spring to stretch to a new equilibrium position and measure the distance the spring is stretched from its original equilibrium position.
Explanation:
The options are:
a. Place the object on one side of a lever at a known distance away from the fulcrum. Place known masses on the other side of the fulcrum so that they are also paced on the lever at known distance from the fulcrum. Move the known masses to a known distance such that the lever is in static equilibrium.
b. Place the object on a surface of negligible friction and pull the object horizontally across the surface with a spring scale at a non constant speed such that a motion detector can measure how the objects speed as a function of time changes.
c. Place the object on a surface that provides friction between the object and the surface. Use a surface such that the coefficient of friction between the object and the surface is known. Pull the object horizontally across the surface with a spring scale at a nonconstant speed such that a motion detector can measure how the objects speed as a function of time changes.
d. Place the object on the end of a vertically hanging spring with a known spring constant. Allow the spring to stretch to a new equilibrium position and measure the distance the spring is stretched from its original equilibrium position.
Gravitational mass simply has to do with how the body responds to the force of gravity. From the options given, the correct options are A and D.
For option A, by balancing the torque, the mass can be calculated. Since the known mass and the distance has been given here, the unknown mass can be calculated.
For option D, here the gravitational force can be balanced by the spring force and hence the mass can be calculated.
Answer:
Explanation:
The problem is based on the concept of Doppler's effect of em wave .
Expression for apparent frequency can be given as follows
n = N x (V - v ) / ( V + v )
n is apparent frequency , N is real frequency , V is velocity of light and v is velocity of cloud.
n = 6 x 10⁹ ( 3 x 10⁸ - 8.52 ) / ( 3 x 10⁸ + 8.52 )
= 6 x 10⁹ ( 3 x 10⁸ ) ( 3 x 10⁸ + 8.52 )⁻¹
= 6 x 10⁹ ( 3 x 10⁸ ) ( 3 x 10⁸)⁻¹ ( 1 + 8.52/3 x 10⁸ )⁻¹
= 6 x 10⁹ ( 1 - 8.52/3 x 10⁸ )
= 6 x 10⁹ - 6 x 10⁹x 8.52/ (3 x 10⁸ )
= 6 x 10⁹ 1 - 170 .
So change in frequency = 170 approx.