Answer:
passive voice
many messengers all over the world was sent by emperor Ashoka to preach Buddhism.
Which pen was liked by you?
Has your passport size photo been taken for the application form?
A beautiful bicycle was given to me on my birthday by my father.
The plants is being watered by the gardener.
Paul said that he will never leave you and he will always be with you.
Answer:
1.19cm^3 of glycerine
Explanation:
Let Vo= 150cm^3 for both aluminum and glycerine, using expansion formula:
Volume of spill glycerine = change in volume of glycerine - change in volume of aluminum
Volume of glycerine = coefficient of volume expansion of glycerine * Vo* change in temperature - coefficient of volume expansion of Aluminum*Vo* change temperature
coefficient of volume expansion of aluminum = coefficient of linear expansion of aluminum*3 = 23*10^-6 * 3 = 0.69*10^-4 oC^-1
Change in temperature = 41-23 = 18oC
Volume of glycerine that spill = (5.1*10^-4) - (0.69*10^-4) (150*18) = 4.41*10^-4*2700 = 1.19cm3
10.92N
Explanation:
Given parameters:
Mass of truck = 2.964kg
Velocity of truck = 7m/s
Time taken = 1.9s
Unknown:
Average force on the car = ?
Solution:
According to newton's third law of motion "action and reaction are equal and opposite".
The force with which the truck struck the fence is the same as the force the fence acted on the truck with but in another direction.
From newton's second law:
Force = mass x acceleration
We know that acceleration is the change in velocity with time;
acceleration =
Force = mass x
Force =
= 10.92N
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2