Seven
The magnitude is pointing towards the origin and is at - 20 degrees. The combination makes 160 with the x axis: C answer
Eight
They keep doing this. They use distance where they should use displacement but they use distance to try and fool you. It's a mighty poor practice.
The distance between the start and end points is the displacement. That "distance" is 180*sqrt(25) = 900 . The actual distance should be 180*4 + 180*3 = 720 + 540 = 1260. That's what a car's odometer or a bicycle odometer would read. the difference is 360.
I really do object to the wording, but what can I do?
Nine
Nine is the same thing as 8.
Displacement = sqrt(400^2 + 80^2)= sqrt(166400) = 408
The actual distance is 400 + 80 = 480
The difference is the answer = 480 - 408 = 72 <<<< Answer
Ten
This is just the displacement magnitude.
dis = sqrt(30^2 + 80^2)
dis = sqrt(900 + 6400)
dis = sqrt(7300)
dis = 85.44 <<<< Answer D
Twelve
Vi = 2.15*Sin(30) = 1.075 m/s
vf = 0
a = - 9.81
t = ?
<u>Formula</u>
a = (vf - vi)/t
<u>Solve</u>
-9.81 = (0 - 1.075)/t
- 9.81 * t = -1.075
t = 0.11 seconds
Thirteen
I'm leaving this last one to you. You need the initial height xo to answer it properly. Judging by the other questions, this one is right.
Edit
That is a surprise! Really quickly
d = 3.2 m
a = - 9.82
vf = 0
vi = ?
vf^2 = vi^2 - 2*a*d
0 = vi^2 - 2*9.81*3.2
vi = sqrt(19.62*3.2)
vi = 8.0 m/s But that is the vertical component of the speed
v = vi/sin(25)
v = 8.0/sin(25) = 11
Answer:
c.) 25 N
Explanation:
We find the volume of the brick, knowing that the volume of a cube is given by the formula:
being l the side of the cube, which in this case is 10 cm or 0,1 m. Now we find the mass of the object, knowing the density and the Volume of the cube:
We find the weight by multiplying the mass of the object with the gravity constant.
Answer:
Jesseca wanted to create a material that reflected most of the light that fell on it.
Explanation: The Graphite was the material in the passage that had reflected most of the light.
Answer:
Explanation:
According to “Newton's second law”
“Force” is “mass” times “acceleration”, or F = m× a. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Force = mass × acceleration
Given that,
Mass = 5.32 kg
F = 12.7N
Normal force = mg + F sinx,
“m” being the object's "mass",
“g” being the "acceleration of gravity",
“x” being the "angle of the cart"
To find normal force substitute the values in the formula,
Normal force = 5.32 × 9.8 + 12.7 × sin(-28.7)
Normal force = 52.136 + 12.7 × 0.480
Normal force = 52.136 + 6.096
Normal force = 58.232 N
<u>Acceleration of the cart</u>: