This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.

where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,

solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
The voltage across resistor is 75 volts, because you can solve this using the ohm law.
Hope this help!!
Answer:
the cannonball’s velocity parallel to the ground is 86.6m/S
Explanation:
Hello! To solve this problem remember that in a parabolic movement the horizontal component X of the velocity of the cannonball is constant while the vertical one varies with constant acceleration.
For this case we must draw the velocity triangle and find the component in X(see atached image).
V= Initial velocity=100M/S

V= Initial velocity=100M/S
Vx=cannonball’s velocity parallel to the ground
Solving for Vx
Vx=Vcos30
Vx=(100m/S)(cos30)=86.6m/s
the cannonball’s velocity parallel to the ground is 86.6m/S
Answer:Protons, neutrons, and electrons are the three main subatomic particles found in an atom. Protons have a positive (+) charge. An easy way to remember this is to remember that both proton and positive start with the letter "P." Neutrons have no electrical charge.
If the mass of an object doubles, the weight of the object also doubles
If the mass of an object halves, the weight of the object also halves
Explanation:
The mass of an object is an intrinsec property of the object that gives a measure of the "amount of matter" in the object. Mass is indipendent from the location of the object.
On the contrary, weight gives a measure of the force of gravitational attraction felt by the object in a gravitational field. Weight is dependent on the location.
The mass and the weight of an object are related by the following equation:

where:
W is the weight of the object
m is its mass
g is the acceleration of gravity
We see from the formula that the weight of an object is directly proportional to its mass. This means the following:
- If the mass of an object doubles, the weight of the object also doubles
- If the mass of an object halves, the weight of the object also halves
Learn more about forces and weight:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly