A..........................................
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Protons and neutrons in an atom are held together by a nuclear energy also called the strong force.
We have: Energy(E) = Planck's constant(h) × Frequency(∨)
Here, Planck's constant(h) = 6.626 × 10⁻³⁴ J/s
Frequency (∨) = 3.16 × 10¹² /s
Substitute the values into the expression:
E = (6.626 × 10⁻³⁴)(3.16 × 10¹²) J
E = 2.093 × 10⁻²¹ Joules
In short, Your Final answer would be 2.093 × 10⁻²¹ J
Hope this helps!
Answer:
Explanation:
The equilibrium mechanism for the reversible acid is catalyzed by the isomerization of non conjugated β, γ- unsaturated ketones, like 3-cyclohexanone to their conjugated α, I²- unsaturated isomers.
Oxygen of the Carbonyl group in the ketone is protonated by the acid and this is followed by the abstraction of an α- hydrogen from the protonated 3-cyclo hexanone to yield ethanol
2-cyclo hexanone can be obtained by acid catalyzation of 3-cyclohexanone isomers through the formation of it's "enol".