Answer:
20 [N], in the opposite direction of the first force.
Explanation:
We know that newton's second law stipulates that the sum of forces on a body must be equal to the product of mass by acceleration.
![SumF = m*a\\30 + F = 2*5\\F = 30 - (2*5)\\F = - 20 [N]](https://tex.z-dn.net/?f=SumF%20%3D%20m%2Aa%5C%5C30%20%2B%20F%20%3D%202%2A5%5C%5CF%20%3D%2030%20-%20%282%2A5%29%5C%5CF%20%3D%20-%2020%20%5BN%5D)
The negative sign means that the other force acting on the body must be in the opposite direction to the force of 30 [N]
Explanation:
We start by using the conservation law of energy:

or

Simplifying the above equation, we get

We can rewrite this as

Note that the expression inside the parenthesis is simply the acceleration due to gravity
so we can write

where
is the launch velocity.
The following information are given in the question:
Mass, M = 8 g
Temperature, T = 20 degree Celsius
Specific heat of water [this value is a constant] C = 1 c/gc
Heat, Q = ?
The formula for calculating the amount of heat required is given below:
Q = MCT = 8 * 1 * 20 = 160
Therefore, Q = 160 cal.
<span />
Answer:
2.6×10⁻³ N
Explanation:
From coulomb's law,
F = kq'q/r²................ Equation 1
Where F = Repulsive force, q' = charge on the first sugar grain, q = charge on the second sugar grain, r = distance of separation between the sugar grain, k = proportionality constant.
From the question,
since q' = q
Then,
F = kq²/r²..................... Equation 2
Given: q = 1.79×10⁻¹¹ C, r = 3.45×10⁻⁵ m,
Constant: k = 9×10⁹ Nm²/kg².
Substitute into equation 2
F = 9×10⁹(1.79×10⁻¹¹)²/(3.45×10⁻⁵ )²
F = 9×10⁹(3.2041×10⁻²²)/(11.9025×10⁻¹⁰)
F = (28.8369×10⁻¹³)/(11.9025×10⁻¹⁰)
F = 2.6×10⁻³ N.