1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
6

A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the m

erry-go-round along a path tangent to the rim of the at a speed of 5.0 m/s. Determine the angular velocity of the system after the boy hops on the merry-go-round.
Physics
1 answer:
nekit [7.7K]3 years ago
5 0

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

F_T \cdot r = I \cdot \alpha  = m \cdot r^2  \cdot \alpha

Where;

F_T = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

I_m \cdot \alpha_m  = I_m \cdot \dfrac{v_m}{r \cdot t}

I_m = The rotational inertia of the merry-go-round

\alpha _m = The angular acceleration of the merry-go-round

v _m = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

I_b \cdot \alpha_b  = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Where;

I_b = The rotational inertia of the boy

\alpha _b = The angular acceleration of the boy

v _b = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Which gives;

v_m = \dfrac{m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2  \cdot v_b}{I_m}

From which we have;

v_m =  \dfrac{20 \times 3^2  \times 5}{600} =  1.5

The velocity of the merry-go-round, v_m, after the boy hops on the merry-go-round = 1.5 m/s.

You might be interested in
A comet is first seen at a distance of d astronomical units from the Sun and it is traveling with a speed of q times the Earth’s
saw5 [17]

To solve this problem it is necessary to take into account the concepts of Gravitational Force and Kinetic Energy.

The kinetic energy is given by the equation:

F= \frac{mv^2}2

La energía gravitacional por,

F=\frac{GM_cm}{d}

Where m is the mass, v is the velocity, G the gravitational constant M_e the mass of the earth, m the mass of the sun and d the distance ..

The sum of the energies, we must be a total energy

E= \frac{mv^2}2+\frac{GM_em}{d}

By the type of orbit we know that

E> 0 is a hyperbolic orbit

E = 0 is a parabolic orbit

E <0 is a closed orbit.

In the case of hyperbolic orbit

E>0

\frac{mq^2}{2}-\frac{GM_em}{d}>0\\\frac{qv^2_e}{2}>\frac{GM_em}{d}\\q^2d>2\frac{GM_e}{v^2_e}\\q^2d>2

The case of the comet is a closed orbit, so,

E<0

\frac{mv^2}2+\frac{GM_em}{d}

For parabolic orbit

E=0

\frac{mv^2_eq^2}{2}-\frac{GM_cm}{d}=0\\\frac{v^2_eq^2}{2}=\frac{GM_c}{d}\\q^2d=2\frac{GM_e}{v^2_e}\\q^2d=2

For the sun and the earth

\frac{m_ev_e^2}{r}=\frac{GM_em_e}{r^2}

v^2_e=\frac{GM_e}{r}\\\frac{GM_e}{v_e}=r

where R \approx 1AU

q^2d  For elliptical orbit

8 0
3 years ago
What is a blue moon​
Irina18 [472]
.
a phenomenon whereby the moon appears bluish owing to smoke or dust particles in the atmosphere
8 0
3 years ago
The movement of the liquid in a thermometer shows changes in temperature. An increase in temperature indicates the molecules in
ahrayia [7]

Answer:

The movement of the liquid in a thermometer shows changes in temperature. An increase in temperature indicates the molecules in the liquid *

Explanation:

7 0
3 years ago
A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carries a current of 50 A from one rail to the other.
vagabundo [1.1K]

Answer

given,

mass of copper rod = 1 kg

horizontal rails = 1 m

Current (I) = 50 A

coefficient of static friction = 0.6

magnetic force acting on a current carrying wire is

           F = B i L

Rod is not necessarily vertical

F_x =i L B_d

F_y= i L B_w

the normal reaction N = mg-F y

static friction       f = μ_s (mg-F y )

horizontal acceleration is zero

F_x-f = 0

iLBd = \mu_s(mg-F_y )

 B_w = B sinθ

 B_d = B cosθ

iLB cosθ= μ_s (mg- iLB sinθ)

B = \dfrac{\mu_smg}{i(cos\theta +\mu_s sin\theta)}

\theta =tan{-1}{\mu_s}

\theta =tan{-1}{0.6}

\theta = 31^0

B = \dfrac{0.6\times 1 \times 9.8}{50(cos31^0 +0.6 sin31^0)}

       B = 0.1 T

4 0
3 years ago
Io experiences tidal heating primarily because __________. hints io experiences tidal heating primarily because __________. io i
maxonik [38]
Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
8 0
3 years ago
Other questions:
  • A 1.4-µC point charge is placed between the plates of a parallel plate capacitor. The charge experiences a force of 0.38 N. What
    7·1 answer
  • What factors affect the survival and change(evolution) of species over time?
    5·1 answer
  • If a 75 W lightbulb operates at a voltage of 120 V, what is the current in the
    10·1 answer
  • A bullet is fired through a board 13.0 cm thick in such a way that the bullet's line of motion is perpendicular to the face of t
    6·1 answer
  • When a ball is thrown straight up with no air Resistance, the acceleration is in what direction ?
    9·1 answer
  • What are some drawbacks of electron microscopes? 3. If an object being viewed under the phase-contrast microscope has the same r
    7·1 answer
  • What two forces act on falling bodies?
    7·1 answer
  • A construction worker dropped a brick from a high scaffolding. How fast was? a. How fast was the brick moving after 4.0 s of fal
    6·1 answer
  • A car drives over a hilltop that has a radius of curvature 0.120 km at the top of the hill. At what speed would the car be trave
    8·1 answer
  • How do the magnetic fields of Uranus and Neptune suggest that the mantles inside those planets are fluid?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!