<h3><u>Answer;</u></h3>
= 3032.15 kPa
<h3><u>Explanation;</u></h3>
Using the equation;
PV = nRT , where P is the pressure,. V is the volume, n is the number of moles and T is the temperature and R is the gas constant, 0.08206 L. atm. mol−1.
Volume = 7.5 L, T = 274 +273 = 547 K, N = 5 moles
Therefore;
Pressure = nRT/V
= (5 × 0.08206 × 547)/7.5 L
= 29.925 atm
But; 1 atm = 101325 pascals
Hence; Pressure = 3032150.63 pascals
<u>= 3032.15 kPa</u>
Albert Einstein showed in one of his papers in 1905 that Brownian motion could be explained by assuming that matter is made up of tiny particles. His paper predicted how the motion should look like and also allowed for the calculation of the mass of a single molecule.
Current evidence includes:
1. Individual ions (atoms with an electric charge) can be manipulated using electric and magnetic fields.
2. Elevation maps can now be made that show bumps caused by individual atoms.
Answer:
The period 2 element would be more reactive because the attractive force of protons is stronger when electrons are attracted to a closer electron shell.
Explanation:
Nonmetals want to add more electrons to their valence electron shell. Elements in period 2 have their valence shell closer their nucleus, then they are more reactive than period 4 elements.
Answer:
rock is the correct answer
Explanation: