Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Explanation:
speed : • how fast an object changes position
• miles per hour.
• distance/time.
velocity: • speed in a direction
• miles per hour North
• distance/ time in a direction
Answer:
<u>: WHY DIDN'T THE POD DOCK LIKE IT WAS SUPPOSED TO DO?</u><u> </u>
<u>ANSWER</u><u>;</u>
The force exerted by the thrusters caused the pod to change direction.
WHAT NEW THEORIES DO YOU HAVE?
ANSWER;
This pod moved differently because it was more massive.
<em><u>C</u></em><em><u>A</u></em><em><u>R</u></em><em><u>R</u></em><em><u>Y</u></em><em><u>O</u></em><em><u>N</u></em><em><u>L</u></em><em><u>E</u></em><em><u>A</u></em><em><u>R</u></em><em><u>N</u></em><em><u>I</u></em><em><u>N</u></em><em><u>G</u></em><em><u>:</u></em><em><u>)</u></em>
Answer:
45.6m
Explanation:
The equation for the position y of an object in free fall is:

With the given values in the question the equation has one unknown v₀:

Solving for t=1:
1) 
To find the hight of the tower you can use the concept of energy conservation:
The energy of the body 1 sec before it hits the ground:
2) 
If h is the height of the tower, the energy on top of the tower:
3) 
Combining equation 2 and 3 and solving for h:
4) 
Combining equation 1 and 4:

I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.