1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
15

A moving object must have which type of energy

Physics
1 answer:
xxMikexx [17]3 years ago
7 0

Answer:

Kinetic Energy

Explanation:

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force. ... Kinetic energy can be transferred between objects and transformed into other kinds of energy. For example, a flying squirrel might collide with a stationary chipmunk.

You might be interested in
What kind of waves are present during an earthquake? ...
Brrunno [24]

Answer:

1. The two main types of waves are body waves and surface waves. Body waves can travel through the earth's inner layers, but surface waves can only move along the surface of the planet like ripples on water. Earthquakes radiate seismic energy as both body and surface waves.

2. potential energy

3. Newton's second law of motion is F = ma, or force is equal to mass times acceleration.

4. Refraction is the bending of light

5. Density uses the formula p=m/V, or density (p) is equal to mass (m) divided by volume (V). Density is defined as mass per unit volume.

Explanation:

6 0
3 years ago
A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force
Tamiku [17]

Answer:

(a) 91 kg (2 s.f.)    (b) 22 m

Explanation:

Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.

(a)

                                                   s \ = \ ut \ + \ \displaystyle\frac{1}{2} at^{2} \\ \\ a \ = \ \displaystyle\frac{2(s \ - \ ut)}{t^{2}} \\ \\ a \ = \ \displaystyle\frac{2(11 \ - \ 0)}{5^{2}} \\ \\ a \ = \ \displaystyle\frac{22}{25} \\ \\ a \ = \ 0.88 \ \mathrm{m \ s^{-2}}

     Subsequently,

                                                  F \ = \ ma \\ \\ m \ = \ \displaystyle\frac{F}{a} \\ \\ m \ = \ \displaystyle\frac{80 \ \mathrm{kg \ m \ s^{-2}}}{0.88 \ \mathrm{m \ s^{-2}}} \\ \\ m \ = \ 91 \mathrm{kg} \ \ \ \ \ \ (2 \ \mathrm{s.f.})

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.

(b) To find the final velocity of the ice block at the end of the first 5 seconds,

                                                    v \ = \ u \ + \ at \\ \\ v \ = \ 0 \ + \ (0.88 \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \\ \\ v \ = \ 4.4 \ \mathrm{m \ s^{-1}}

     According to Newton's First Law which states objects will remain at rest

     or in uniform motion (moving at constant velocity) unless acted upon by

     an external force. Hence, the block of ice by the end of the first 5

     seconds, experiences no acceleration (a = 0) but travels with a constant

     velocity of 4.4 m \ s^{-1}.

                                                    s \ = \ ut \ + \ \displaystyle\frac{1}{2}at^{2} \\ \\ s \ = \ (4.4 \ \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \ + \ \displaystyle\frac{1}{2}(0)(5^{2}) \\ \\ s \ = \ 22 \ \mathrm{m}

      Therefore, the ice block traveled 22 m in the next 5 seconds after the

      worker stops pushing it.

4 0
2 years ago
2 Physic Questions For 20 Points ✨
Anna [14]
Jupiter Cannot Become A Star.
Jupiter Is The Fastest Spinning Planet In The Solar System.
The Clouds On Jupiter Are Only 50 km Thick.
8 0
3 years ago
Wнιcн deмonѕтraтeѕ condυcтιon
jekas [21]

C.) cool feet walking across a hot pavement.



The reason because the other ones deals with radiation. Only C.) is the right answer because the feet is touching the hot pavement which is conduction. 
3 0
3 years ago
Determine the vertex form of g(x) = x2 + 2x - 1. Which graph represents g(x)?<br> 5) Intro
Paladinen [302]

g(x) =  x ^{2}  + 2x - 1 =  {x}^{2}  + 2x - 1 + 2 - 2  =  \\  = (x + 1) {}^{2}  - 2

6 0
3 years ago
Other questions:
  • You have a remote-controlled car that has been programmed to have velocity v⃗ =(−3ti^+2t2j^)m/s, where t is in s. At t = 0 s, th
    5·1 answer
  • The united states consumes 2.5´1019 j of energy each year. a typical solar flare releases 5.0´1024 j of energy. how many years c
    15·1 answer
  • What are compounds made of
    9·1 answer
  • Planet Tatoone is about 1.7 AU from its Sun. Approximately how long will it take for light to travel from the Sun to Tatoone in
    6·1 answer
  • If a car takes a banked curve at less than a given speed, friction is needed to keep it from sliding toward the inside of the cu
    5·2 answers
  • I takes you 42 minutes to travel 32 miles to Ann Arbor. What was your<br> speed getting there?
    12·1 answer
  • A child picks up a tennis ball tied to the end of a rope. He swings the rope around, over his head, in a circle. Once the ball i
    10·1 answer
  • What is electronegativity​
    5·1 answer
  • Help me! Btw he’s playing golf.
    13·1 answer
  • A spring is stretched 5 cm from its equilibrium position. If this stretching requires 30 J of work,
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!