Use PV = nRT and solve for P.
n = grams/molar mass = 5.00/molar mass CO2
Ignore the SO2.
But I think the answer it 6.74 atm
But I’m not saying but is but I’m just thinking this is the answer.
Goodluck!
Answer:
(c) increase by a factor of four
Explanation:
energy = power x time, and power = resistance x current ^2. 2^2 = 4.
Answer:
gravity and normal force I think
Answer:
The current is 
Explanation:
From the question we are told that
The radius is 
The current density is 
The distance we are considering is 
Generally current density is mathematically represented as

Where A is the cross-sectional area represented as

=> 
=> 
Now the change in current per unit length is mathematically evaluated as

Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows


![I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%5Cfrac%7Br%5E4%7D%7B4%7D%20%5D%20%20%7C%20%5Cleft%20%20%20%200.001585%7D%20%5Catop%200%7D%7D%20%5Cright.)
![I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%5Cpi%20%2A%289.0%2A10%5E%7B6%7D%29%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)
substituting values
![I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ]](https://tex.z-dn.net/?f=I%20%20%3D%202%20%2A%20%203.142%20%20%2A%20%209.00%20%2A10%5E6%20%2A%20%20%20%5B%20%5Cfrac%7B0.001585%5E4%7D%7B4%7D%20%5D)

Answer:
Ice cubes float on water because they are less dense.
Explanation:
Ice is about 9% less dense than water. Water is heavier, so ice is lighter, causing it to float. It is less dense because the density of water decreases along with a decrease in temperature. Therefore, causing ice to be less dense than water