Answer:
Kinetic energy does not stay the same at all heights
Explanation:
Well as the height and wind increase so does the kinetic energy it's like when you fall as you are about to hit the floor you speed increases
HOPE THIS HELPS YA :)
Answer:
v = 27 m/s
Explanation:
To find the speed of cars after the collision you take into account the momentum conservation law. Total momentum of both cars before the collision must be equal to the total momentum of both cars after the collision.
After the collision both cars traveled together, then you have:
(1)
m1: mass of the Toyota = 3-ton = 3000 kg
m2: mass of the taxi = 2-ton = 2000kg
v1: speed of the Toyota before the collision = 45m/s
v2: speed of the car before the collision = 0 m/s (it is at rest)
v: speed of both cars after the collision = ?
You solve the equation (1) for v:

Next, you replace the values of the rest of the variables:

hence, just after the collision both cars have a speed of 27m/s
Answer:
22 m/s
Explanation:
PEf +KEf =PE0 +KE0 →PE0 −PEf =KEf
−mgΔy= 1 mv2 →v= −2gΔy = −2(9.8 m/s2)(−25 m)=22 m/s
Answer:
Approximately
.
Explanation:
<h3>Solve this question with a speed-time plot</h3>
The skateboarder started with an initial speed of
and came to a stop when her speed became
. How much time would that take if her acceleration is
?
.
Refer to the speed-time graph in the diagram attached. This diagram shows the velocity-time plot of this skateboarder between the time she reached the incline and the time when she came to a stop. This plot, along with the vertical speed axis and the horizontal time axis, form a triangle. The area of this triangle should be equal to the distance that the skateboarder travelled while she was moving up this incline until she came to a stop. For this particular question, that area is approximately equal to:
.
In other words, the skateboarder travelled
up the slope until she came to a stop.
<h3>Solve this question with an SUVAT equation</h3>
A more general equation for this kind of motion is:
,
where:
and
are the initial and final velocity of the object,
is the constant acceleration that changed the velocity of this object from
to
, and
is the distance that this object travelled while its velocity changed from
to
.
For the skateboarder in this question:
.