Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
Explanation:
∆x=300 m×2
∆t=1.5 s
v=∆x/∆t → v=2×300/1.5 = 400 m/s
The final speed of the nickel at the given quantity of heat is determined as 202.1 m/s.
<h3>Final speed of the nickel</h3>
Apply the principle of conservation of energy.
Q = mcΔθ
Q = (18)(0.444)(66 - 20)
Q = 367.63 J
Q = K.E = ¹/₂mv²
2K.E = mv²
v = √(2K.E/m)
where;
v = √(2 x 367.63)/(0.018))
v = 202.1 m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
Answer:
option b
Explanation:
from the given formula, s=d/t
make t the subject of the formula we have
t=d/s
5/100
0.5