A table would be the most appropriate because that way you can compare the data.
Answer:
The correct option is;
d) F, because the net force is equal to the mutual contact force between the blocks
Explanation:
The given information are
The mass of block A = m
The velocity of block A = +v
The mass of block B = 2·m
The velocity of block B = -v
Given that the two blocks collide, we have;
Initial total momentum = m × v + 2·m×(-v) = m·(v - 2·v) = -m·v
Final total momentum = m × v₁ + 2·m×v₂ = m·(v₁ + 2·v₂)
From the law of conservation of linear momentum, we have;
m·(v₁ + 2·v₂) = -m·v
v₁ + 2·v₂ = -v
Therefore, the resultant velocity of the two blocks is -v, and the direction of the block A is reversed and the resultant inertia is equivalent to the inertia of block A
Therefore;
The force exerted on block B = The force exerted on block A = The rate of change of momentum experienced by the two blocks = The mutual contact force experienced between the blocks.
Answer:
C
Explanation:
Since the circuit is in parallel there will be no effect on the other loads.
Answer:
<em>Ecologist</em><em>.</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>Your</em><em> </em><em>answer </em><em>is</em><em> </em><em>Ecologist</em><em>.</em>
Answer:
C. Up, equal to the can's weight
Explanation:
You are camping in the breathtaking mountains if Colorado. You spy an unopened diet soda can floating motionless below the surface of a lake. What is the direction and amount of force the water exerts on it?
A. Zero
B. Down, equal to the can's weight
C. Up, equal to the can's weight
D. Not enough information is given
from the principle of flotation which states that a
When a body displaces a weight of water equal to its own weight, it floats. : A floating object displaces a weight of fluid equal to its own weight. ... Archimedes' principle equates the buoyant force to the weight of the fluid displaced.
the upthrust (this is the upward vertical force exerted on an object in fluid)in the water equals the weight of the body in water it floats.