Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second
F = m*a
30 N = (ma + mb) * a
30 = 5*a
a = 6 m/s ^2
F de B em A
30 - F de B,A = ma * a
30 - F de B em A = 3 * 6
30 - 18 = F de B em A
12 = F de B em A
Resposta: 6 m/s^2 e 12N
Bate com o gabarito, man? Ou eu tô viajando aqui?
Abç!
Answer:
Load
Explanation:
A normal power supply can deliver up to certain amount of power to a load. The output power can be calculated multiplying Voltage (V) x Current (A). It happens that after a certain period of time, the power source's main components begin to wear, thus losing its ability to deliver its nominal power. Normally, when no load its connected to the source, you will get the operating Voltage, but when the load demands power, the ability to deliver power to it may fail to reach nominal levels. When connected, there may be voltage drops (thus, less power output) causing malfunctions turning it into a non-operative power supply.
Answer:
A. The upward pressure gradient force is balanced by gravity.
Explanation:
A. is correct because the pressure difference is actually generated by gravity. As in the following formula for the pressure at different points:

where
are the pressure at 2 points, ρ is the density of the fluid, g is the gravitational constant, and h is the height difference.
B is incorrect because friction in air is too small to make an effect.
C is incorrect because the Coriolis force is horizontal, not vertical.
D is incorrect because a difference of 500 hPa = 50000 Pa, this is half of the atmospheric pressure.
E is incorrect because temperature cannot generate force.