Answer: Fe<em>(aq)</em>+S<em>(aq)</em>=FeS<em>(s)</em>
Explanation: The Sodium and Bromine are spectator ions because they don't react with anything, you can see this by writing the ionic equation like so:
1.) Molecular formula (given): FeBr2 (aq)+Na2S (aq)= FeS(s)+2NaBr(aq)
Each dissolved FeBr2 breaks up into one Fe with a charge of 2+ and two Br with a negative charge. This gives you:
Fe(aq)+ 2Br(aq)+Na2S(aq)=FeS(s)+2NaBr
2.) Now repeat what was shown with the other compounds in the given molecular formula, and pay attention to the states that each ion is in (solid, liquid, aqueous, gas) because this will give you the ionic equation, which from there you can get rid of any ions that don't change amount or state.
3.) Ionic formula: Fe(aq)+ <u>2Br(aq)</u>+<u>2 Na(aq)</u>+S (aq)=FeS(s)+<u>2 Na(aq)+2Br(aq)</u>
4.)When you've derived a total ionic equation (above), you'll find that some ions appear on both sides of the equation in equal numbers. For example, in this case two Na cations and two Br anions appear on both sides of the total ionic equation. What does this mean? It means these ions don't participate in the chemical reaction. They're present before and after the reaction. Nothing happens to them. So those are removed and you're left with the net ionic: Fe(aq)+S(aq)=FeS(s)
Hope this helps :)
D-sublevel can occupy 10 electrons whereas s-sublevel can occupy 2 electrons...
Answer:
i) ciclobutano
ii) 3-etil-4-metil ciclopenteno
Explanation:
Toda la idea de la nomenclatura IUPAC es permitir que la estructura de la sustancia se derive de su nombre y viceversa.
La nomenclatura IUPAC es un sistema universalmente aceptado para nombrar compuestos químicos.
los nombres de los compuestos enumerados son;
i) ciclobutano
ii) 3-etil-4-metil ciclopenteno
Answer:
1.Sulfur dioxide and nitrogen oxide
2.a)it forms carbonic acid
b)
3.the community can use renewable energy like solar and wind power cause they produce less pollution
Answer:
Rhodium is used to make electrical contacts, as jewelry and in catalytic converters, but is most frequently used as an alloying agent in other materials, such as platinum and palladium. These alloys are used to make such things as furnace coils, electrodes for aircraft spark plugs and laboratory crucibles.
Explanation: