The maximum negative displacement of a wave is the same as its amplitude.
As a wave travels through space, its particles are sometimes above the
<em>x</em>-axis (+) and sometimes below it (-).
The maximum displacement from the axis is the <em>amplitude</em> of the wave.
The amplitude of the wave is the <em>same in both the positive and negative directions</em>.
For this problem we use the wave equation. It is expressed as the speed (c) is equal to the product of frequency (f) and wavelength (v).
c = v x f
We know the wavelength of the an red light which is 6.5 x 10^-7 m. Now, we solve for the wavelength of the unknown wave to see the relation between the two waves.
2.998 X 10^8 = 5.3 X 10^15 X v
v = 2.998 X 10^8 / (5.3 X 10^15) = 5.657 X 10^-8 m
Therefore, the wavelength of the unknown wave is less than the wavelength of the red light.
An electron in motion generates an electromagnetic field and is in turn deflected by external electromagnetic fields. When an electron is accelerated, it can absorb or radiate energy in the form of photons. Electrons, together with atomic nuclei made up of protons and neutrons, make up the
Answer:
exothermic
Explanation:
This chemical reaction is an exothermic reaction because heat is liberated into the environment.
In organic chemistry, the reaction is termed a combustion reaction. In such a reaction, a fuel combines with oxygen to produce carbon dioxide and water.
It is an energy transformation from chemical energy to heat energy.
- An exothermic reaction is one in which heat is liberated to the surrounding.
- The surrounding becomes hotter at the end of the reaction.
In the reaction depicted, heat is liberated.