A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12t² + 35 t + 1
Answer:
Velocity = 131 m/s
Speed = 131 m/s
Explanation:
Equation of motion, s = f(t) = 12t² + 35 t + 1
To get velocity of the particle, let us find the first derivative of s
v (t) = ds/dt = 24t + 35
At t = 4
v(4) = 24(4) + 35
v(4) = 131 m/s
Speed is the magnitude of velocity. Since the velocity is already positive, speed is also 131 m/s
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
Answer:
658.16N
Explanation:
Step one:
given data
mass m= 235kg
Force F= 760N
angle= 30 degrees
Required
The horizontal component of the force
Step two:
The horizontal component of the force
Fh= 760cos∅
Fh=760cos30
Fh=760*0.8660
Fh=658.16N
Answer:
The two most common types of orbit are "geostationary" and "polar."
Answer:
Yes, the calorie can be expressed in SI units
Explanation:
1 calorie (1 cal) is defined as the amount of heat energy that must be supplied to 1 gram of water in order to raise its temperature by 1 degree Celsius (
.
The calorie is not a unit of the International System (SI): the SI unit for the energy is the Joule (J).
However, it is possible to convert energy from calories to Joules, and viceversa. In fact, the conversion factor between the two units is:
1 calorie = 4.184 Joules
So, to convert from calories to Joules we simply multiply by 4.184, while if we want to convert from Joules to calories, we just divide by 4.184.