<span>When one talks about ppm in a liquid solution someone means mg/L so we would not be using the density. This usually means ug/g or mg/kg
0.115 g Na^+ * 10^6 ug/1 g = 115000 ug/g
4.55 L * 1000 mL/1L = 4550 mL
Concentration of Na^+ in ppm:
115000 ug/g /4550 mL = 25.27 pm of sodium ion</span>
Answer:
If the electronegativity difference between bonded atoms are too much high ionic bonds are formed if the electronegativity diference is 0.4 or less than 0.4 non polar covalnet bond formed the difference greater than 0.4 polar covalent bond formed.
Explanation:
Ionic bond:
It is the bond which is formed by the transfer of electron from one atom to the atom of another element.
Both bonded atoms have very large electronegativity difference. The atom with large electronegativity value accept the electron from other with smaller value of electronegativity.
For example:
Sodium chloride is ionic compound. The electronegativity of chlorine is 3.16 and for sodium is 0.93. There is large difference is present. That's why electron from sodium is transfer to the chlorine. Sodium becomes positive and chlorine becomes negative ion.
Covalent bond:
It is formed by the sharing of electron pair between bonded atoms.
The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate
There's a slight error in your equation. I think you were trying to present it like this:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Mole Ratio
O2 : H20
25 : 18
? moles : 18 moles
(18/18)×25 : 18 moles
25 moles : 18 moles
Final answer would be 25 moles of O2. :)
If you have any doubts that you want to clarify with me, please ask me! :)
I will do my utmost best to help you.
A standard drink of beer is 12 ounces