Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:


Explanation:
From the question we are told that
Mass of ball 
Length of string 
Wind force 
Generally the equation for
is mathematically given as




Max angle =
Generally the equation for max Height
is mathematically given as



Generally the equation for Equilibrium Height
is mathematically given as



Answer:
1 is 90, 2 is 200 and 3 is 5
Explanation:
im big brain so i know lol
To the Earth in less than ten minutes.
Given parameters:
Mass of the car = 1000kg
Unknown:
Height = ?
To find the heights for the different amount potential energy given, we need to understand what potential energy is.
Potential energy is the energy at rest due to the position of a body.
It is mathematically expressed as:
P.E = mgh
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height of the car
Now the unknown is h, height and we make it the subject of the expression to make for easy calculation.
h = 
<u>For 2.0 x 10³ J;</u>
h =
= 0.204m
<u>For 2.0 x 10⁵ J;</u>
h =
= 20.4m
<u>For 1.0kJ = 1 x 10³J; </u>
h =
= 0.102m