Answer:
Explanation:
Given

Frictional Force is balanced by force due to car acceleration
Frictional force 




Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Answer:
A tsunami with a record run-up height of 1720 feet occurred in Lituya Bay, Alaska. On the night of July 9, 1958, an earthquake along the Fairweather Fault in the Alaska Panhandle loosened about 40 million cubic yards (30.6 million cubic meters) of rock high above the northeastern shore of Lituya Bay.
Explanation:
Heat will be produced because of the friction from the tires
9.79395 m/s²
2.44228 m/s²
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 km
a) at h = 6400 m
g = 9.79395 m/s²
b) at h = 6400000 m
g = 2.44228 m/s² I believe