Answer: ![-\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BBr%5E.%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{d[Br^.]}{2dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D)
or ![Rate=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Thus ![-\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Answer:
40 N
Explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N
You can use mostly anything as long as it is circular. Depending on how big it is, you could use sturdy paper plates and use a stick/rod and tape to hold it together, or you could use bottle caps if the car you are trying to make is really small.
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".